Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(2): 180-185, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37283516

RESUMO

CD4 tissue-resident memory T cells (TRMs) allow robust protection of barrier surfaces against pathogens. We investigated the role of T-bet in the formation of liver CD4 TRMs using mouse models. T-bet-deficient CD4 T cells did not efficiently form liver TRMs when compared with wild-type (WT). In addition, ectopic expression of T-bet enhanced the formation of liver CD4 TRMs, but only when in competition with WT CD4 T cells. Liver TRMs also expressed higher levels of CD18, which was T-bet dependent. The WT competitive advantage was blocked by Ab neutralization of CD18. Taken together, our data show that activated CD4 T cells compete for entry to liver niches via T-bet-induced expression of CD18, allowing TRM precursors to access subsequent hepatic maturation signals. These findings uncover an essential role for T-bet in liver TRM CD4 formation and suggest targeted enhancement of this pathway could increase the efficacy of vaccines that require hepatic TRMs.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Animais , Camundongos , Memória Imunológica , Fígado , Células T de Memória , Antígenos CD18
2.
STAR Protoc ; 2(3): 100633, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34258594

RESUMO

Molecular-level understanding of plasma cell (PC) differentiation has been modeled using lipopolysaccharide (LPS) stimulation in vitro. However, this system does not involve the B-cell receptor (BCR)-a critical component of B cell biology. Here, we present a protocol for in vitro PC differentiation system dependent on BCR signaling that easily scales up for cell number-demanding applications, including protein complex purification. We describe how to set up this system and detail applications for endogenous complex purification of chromatin-associated proteins. For further details on the use and execution of this protocol, please refer to Sciammas et al. (2011) and Ochiai et al. (2018, 2020).


Assuntos
Diferenciação Celular , Cromatina/metabolismo , Plasmócitos/citologia , Proteínas/isolamento & purificação , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Cromatografia Líquida/métodos , Meios de Cultura , Camundongos , Camundongos Transgênicos , Proteínas/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Espectrometria de Massas em Tandem/métodos
3.
Trends Immunol ; 41(7): 614-628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467029

RESUMO

Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.


Assuntos
Formação de Anticorpos , Linfócitos B , Redes Reguladoras de Genes , Fatores Reguladores de Interferon , Linfócitos T Auxiliares-Indutores , Animais , Formação de Anticorpos/genética , Linfócitos B/imunologia , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...